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Trajectory versus probability density entropy

Mauro Bologna* Paolo Grigolinit23 Markos Karagiorgi¢,and Angelo Rosa
Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427
2Istituto di Biofisica del Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, Via Alfieri 1, San Cataldo, 56010,
Ghezzano-Pisa, Italy
3Dipartimento di Fisica dell’'Universitadi Pisa and INFM Piazza Torricelli 2, 56127 Pisa, Italy
(Received 3 March 2000; revised manuscript received 5 April 2001; published 27 June 2001

We show that the widely accepted conviction that a connection can be established between the probability
density entropy and the Kolmogorov-SindS) entropy is questionable. We adopt the definition of density
entropy as a functional of a distribution density whose time evolution is determined by a transport equation,
conceived as the only prescription to use for the calculation. Although the transport equation is built up for the
purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory
time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the
detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible
only in a limited number of cases. The proposals made by some authors to establish a connection between the
two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is
foreign to that of density entropy.
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I. INTRODUCTION point of view establishing a connection between the two
forms of entropy is straightforward, especially in the case of
The so called Kolmogorov-Sina{KS) entropy [1,2], systems with only one Lyapunov coefficigntapg indepen-
calledhys, is a property of a time sequence of symbols anddent of the positiorx. In fact, the nonequilibrium entropy
can be interpreted as the mean entropy increase per unit ficrease is easily related to the local Lyapunov coefficient,
time. In the case of a dynamic system the sequence of symhich, due to the Pesin theorem of Ed), coincides in this
bols is generated by a trajectory running through a phasgase with the KS entropy. For a tutorial demonstration the
space divided into many cells of finite size and labeled withreader can consult, for instance, the book of Hilbpth A
given symbols. In this case this important form of entropymuch more sophisticated mathematical approach is needed to
can be related to the Lyapunov coefficients of the trajectoryaddress the problem in general. This was already done as
under study through the well known expression, derived byearly as 19 years ago by Goldstein and Penfskand Gold-

Pesin[3], stein[6]. Of special interest is the second paper, where the
nonequilibrium entropy introduced by Goldstein and Pen-
heee | d N (X). 1 rose, defined on nonstationary probability measures, is quan-
kS f XPeq(X)i’)\i(Ex)>0 ) @) titatively related to the KS entropy of the system.

The main purpose of the present paper is that of revisiting
Here the symbols,; denote the Lyapunov coefficients, and this important issue from a perspective more familiar to
the sum on the right side of this equation refers only to thephysicists, a significant example of which is given by the
positive Lyapunov coefficients. The symhal, denotes the recent work of Latora and Barangét]. These authors found
invariant measure. From an intuitive point of view we canthat the nonequilibrium entropy increase of invertible maps
say that when the size of the time windows used to determinis characterized by three distinct regimes. The first ig-a
the KS entropy of the symbolic sequence is so large that thgime of transition to thermodynamitasting for a given time
trajectory explores within that time window the whole phaset,. The second is a regime of entropy increase linear in
space, the resulting entropy increase reflects the mean of thiene, lasting from the timé to the timetg>ty . Latora and
sum of all positive Lyapunov coefficients. Barangel{ 7] proved that the rate of entropy increase of this
It seems to be evident, on the basis of this expressiomegime coincides with the KS entropy, and for this reason we
that, if the Gibbs distribution density perspective is adoptedgall it Kolmogorov regime Finally, the third regime, con-
the physical condition corresponding to Ed) is statistical  cerning timeg>tg, corresponds to equilibrium, and the dis-
equilibrium, thereby implying that the distribution density tribution density entropy is time independent. We refer to it
entropy is constant. This is the reason why a connectioms saturation regime
between the two forms of entropy, if it ever exists, can only To properly discuss these results we have to define the
be obtained by considering initial conditions for the distribu-concept of density entropy. Our definition of density entropy
tion density that are far from equilibrium. From an intuitive is close to thephysical entropyof Latora and Barangdi7],
which, in turn, is nothing but the Gibbs entropy. We use the
termdensityrather tharphysicalto avoid the impression that
*Email address: mb0015@unt.edu we judge the density entropy to be more fundamental than
"Email address: grigo@jove.acs.unt.edu the trajectory entropy. Furthermore, as clearly pointed out by
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Lebowitz [8,9], in accordance with Boltzmann’'s point of tinuation. The remarks of these auth¢dsl,12 imply that
view, the relevant entropy for understanding the time evoluthe asserted equivalence between a statistical picture based
tion of macroscopic systems is the Boltzmann entropy anan trajectories and one based on distribution density must be
not the Gibbs entropy. used with caution.

This is not the issue under discussion in the present paper. It is not clear to us if the conclusions of the present paper
We do not take position on whether trajectories are moremight be related to the breakdown of the concept of trajec-
fundamental than densities, or vice versa, and on whetheory, claimed by these authof$1,12. This is still a contro-
mixing type of behavior is essential or not for the irreversibleversial issue that we do not want to address here. We refer to
behavior of macroscopic systems. We limit ourselves to arRefs.[10—12 only as examples of a perspective that would
guing that our definition of density entropy might be incom-be in line with our definition of density entropy, not involv-
patible with the emergence of the KS regime, and this defiing at any extent the concept of trajectory. It is immediately
nition, as we shall see in the concluding remarks of Sec. Vlgvident that the definition of density entropy here adopted
makes it impossible for us to adopt the expedient of Latoraloes not allow us to apply the method of Latora and
and Baranger themselvég] to deal with the case of non- Barangef7]. These authors, in the case of the standard map,
constant Lyapunov coefficients. We assume first theizss-  evaluated the time evolution d¥(t) with different initial
port equatiorexists. This transport equation can be the Liou-conditions, and then determined the time evolution of an
ville equation average entropys(t), a prescription conflicting with our
definition of density entropy. It is not clear to us if this defi-
nition also conflicts with the prescription adopted by Gold-
stein[6]. We think it does since Goldstein’s prescription is

o o ~ based on a partition into cells depending upon trajectory dy-
valid in the case of Hamiltonian systems, or the Frobeniuspgmics.

Perron equation,
p(x,t+1)=Ap(x,t) &) Il. HEURISTIC ARGUMENTS

EP(Xit):_”—P(Xit)’ (2)

The purpose of this section is that of providing a simple
xplanation for the three regimes detected by Latora and

shall Qiscuss in this paper only the se'cond.type of transpog arangef 7]. We want also to convince the reader about the
equation. However, our remarks on invertible maps apply hysical significance of the definition of density entropy

Eil;g g; E[?aen(s:gz?t Zgﬂgﬁggn'an systems and thus to the fir given in Sec. |. To give further support to that definition we

i . . establish a connection between the work of Latora and
We <_jef|ne the density entropy as the time dependent erEaranger[?] and the work of other authofd3—19. These
tropy given by authors deal with quantum rather than classical processes; in
the case of quantum processes, there are no trajectories avail-
S(t)y=— f p(X,t)In[ p(x,t)]dx (4) able and one is forced to adopt a definition of density entropy
X coincident with that of Sec. |. Nevertheless, the adoption of
heuristic arguments based on the classical trajectories is le-

with the request that the time evolution of the distribution .. . X . .
densityp(x.t) be given by the transport equation aordy by gitimate, provided that they do not conflict ywth the prescrip-
' tions of Sec. | to evaluate the time evolution of density en-

the transport equation. We shall show that if this definition Ofltropy
density entropy is adopted, then the emergence of the Kol- .

A . ; Note that the cases studied by Latora and Baralifjeare
mogorov regime is not gu_arant_eed in general, but only n th(?wo dimensional, and our disca/ssion here refersf?o a two-
case of Lyapunov coefficients independent of the coordlnat(aimensional casé t00. The baker's transformation reads
X. ' '

From a rigorous point of view, the adoption of this defi-

valid in the case of low-dimensional mad<]. Actually, we

nition of density entropy would prevent us from adopting the X1 = 2% )
heuristic arguments of Sec. Il, which are based on a widely Vi =Y/?2

accepted conviction that the time evolution of the distribu- pr e

tion density coincides with the result that one would obtainfor 0<x,<1/2, and

evaluating the time evolution of many trajectories with initial

conditions fitting the initial distribution density. This widely Xir1=2%—1

accepted perspective has been recently criticized by Petrosky (6)
and Prigogind11,12. These authors pointed out that there V1= (Y +1)/2,

exists a sort equivalence between the case of Hamiltonian

systems with infinitely many degrees of freedom and low-for 1/2<x,<1.

dimensional chaotic systems. In both cases the operator driv- We adopt here the same heuristic arguments as those used
ing the transport equation, expanded on a suitable basis sdiy the authors of Ref20]. We divide the phase spaeinto
becomes a matrix of infinite size. In both cases the diagonaMW,, . cells of equal size. We considak distinct trajectories
ization of this matrix of infinite size has to be done usingcorresponding to different initial conditions, and mimicking
sophisticated methods, implying the use of analytical cona distribution density concentrated in a small portion of the
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whole phase space. We make the assumption that at all tim@simber of cells occupied remains the same for a while. This
in any cell there is the same number of trajectories. Thigime is easily estimated using the equation
means that the probability of finding a trajectory in a given

cell is 1AW(t), whereW(t) is the number of cells containing L exp(—At)=e, (14)
:;?:]ectones. As a consequence of these assumptions, we Ovtelhich in fact defines the time at which the distribution vol-
ume, and consequently, the system entropy starts increasing.
S(t)=InW(t). (7)  This time is denoted by the symbty and reads
We denote byn the positive Lyapunov coefficient, and we _ L
set N o\e
W(t)=W(0)exp(At). (8) Now we are in a position to evaluate the time duration of

_ ) the Kolmogorov regime, and to assess under which condi-

By plugging Eq.(8) into Eq. (7) we get tions it can become infinitely extended in time. We denote by

U(t) the volume of the distribution density at tinhend by
V the volume of the phase space, thereby implying that

which corresponds to the Kolmogorov regime of Latora aan(t)$V' We note that
Barange(f7]. In fact, the slope of this linear function of time W, v
is the Lyapunov coefficienk, which is related to the KS max—
entropy through Eq(1). A more rigorous approach to the W(0) U(0)
coarse-graining procedure necessary to establish a connege
tion between the Gibbs entropy and the KS entropy can b
found in Ref.[5]. For all this to hold true, it is necessary that
the positive Lyapunov coefficient is independentxofThis

S(t)=rt—InW(0), (9)

(16)

hereV is the total volume of the phase space &h@) is
the initial volume of the distribution density. Thus the Kol-
mogorov regime shows up in the following time interval,

condition is fulfilled by the baker’s transformation, for which 1 /L 1 v
it is well known [21] that tszln(;) <t<tS=XIn(W). a7
A=In2. (10

The time duration of the regime of validity of the Kolmog-

In conclusion, we establish the following attractive connec-CToV regime can be made infinitely extended by making the

tion between the density entroig(t) and the KS entropy cell size infinitely small. This_m_eans that the_ con_ﬂict be-
tween the KS entropy prescription and the time indepen-

dence ofS(t) can be bypassed by focusing our attention on
T In2=hgs. (11)  the intermediate region, whose time duration tends to infinity
with e—0. We note that a choice can be made such that

We have used arguments based on the trajectory instabilitie¥/ Y (0)=(L/€)*, with x>1. This means that the onset of
However, the conclusion is not incompatible with our defi-the saturation regime can be mageiimes larger than the
nition of density entropy, as confirmed by the calculations ofohset of the Kolmogorov regime. Fer—0 both time dura-
Sec. Il that do not rest on the existence of trajectories.  tions become infinite, thereby showing that a Kolmogorov
The Kolmogorov regime is not infinitely extended. It has "€gime of infinite time duration can be obtained at the price,
an upper bound, given by the fact that when equilibrium ishowever, of waiting an infinitely long time for the entropy to
reached, even in the merely sense of a coarse-grained eqificrease. The |r_1f|n|te waiting time before the regime of en-
librium, then the entropy stops increasing. An estimate offopy increase fits the observatif@2,23 that the Gibbs en-
this time is obviously given by the solution of the following foPy of an invertible map is constant. The linear entropy

equation increase showing up “after this infinite waiting time” allows
the emergence of the KS entropy from within the probability
IN Wppax=At—INW(0), (12 density perspective.
In conclusion, if we adopt the perspective of the density
which yields the following saturation time, entropy defined in Sec. |, and the coarse-graining procedure

implicit in the partition adopted by Latora and Baran@éf
as well, we cannot establish a connection with the arguments
of Hilborn [4] and Goldsteir6]. This is so because the Kol-
mogorov regime of density entropy is an intermediate regime
We have now to find the lower bound of validity of the occurring after a transition to thermodynamics. With reduc-
Kolmogorov regimety . This depends on the fact that the ing the cell size the time duration of transition to thermody-
initial distribution might include a large number of cells. Let namics becomes larger and infinitely extended with a vanish-
us assume that the size of this distribution along the coordiing cell size, thereby postponing the physical manifestation
natey is L, and that the size of the cellséswith e<L. Then  of KS entropy. In Sec. Ill we shall see that this transition
it is evident that, in spite of the coarse graining, the totalregime can be eliminated by adopting the tracing method.

13

Wm ax)

tslen W(O)
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The constraints posed by the adoption of the density en- dw
tropy are fulfilled also by the authors of Ref¢3—-19. This gr = "MW+ ). (24)
is so because all these papers, to different extents, share the
perspective established by Zurek and PE3]. According to Let us imagine the initial distribution density as a rect-

this theoretical approach the time evolution of a quantumypgle of sizeAw(0) along the directionv and Au(0) along

system, which would be chaotic in the classical limit, can behe girectionu. We keep denoting by (t) the distribution
safely described by using a classical transport equation. Thisolume at a given time. Thus the volume of the initial
transport equation is the Liouville equation of E8) with a  istribution is

diffusionlike correction term. This diffusionlike correction
corresponds to the influence of a weak stochastic force. The U(0)=Au(0)Aw(0). (25)
stochastic force has a twofold role. First, it prevents the frag-
mentation of the Liouville density from becoming so intenseln the absence of the stochastic forfd¢), Eq. (23) and Eq.
as to activate the quantum corrections to the transport equé24) result in an exponential increase and an exponential de-
tion. Second, it realizes a kind of coarse graining whose eferease, with the same raxe respectively. Consequently, the
fects are essentially indistinguishable from those resulting.iouville theoremU(t) =U(0) is fulfilled. In the presence of
from the partition of the phase space into cells of finite sizestochastic force, we work as follows. In the former equation,
Let us prove this important aspect, using first of all thewith u increasing beyond any limit, the weak stochastic force
inverted stochastic oscillator of Zurek and R&3], namely,  f(t) can be neglected. This is not the case with the latter
equation. In factw is a contracting variable in the absence of
2 5 X the stochastic force. In the presence of the stochastic force
FZK x(O+yg; T1O, (18)  the minimum size of the distribution alongis given by
2\1/2_ 1/2
where the frictiony and the stochastic fordgt) are related {w >eq (D)™ (26)

to one another by the standard fluctuation-dissipation relatioRthis minimum size is reached in a time determined by the
solution of the following equation

dx\2
<ff(t)>:27< a) >eq5(t)52D5(t) (19) AW(O)eX[X—)\t):(D/)\)lIZ (27)

It is interesting to remark that the proper formulation of theY€!ding

second principle implies that the entropy of a system can 12

only increase or remain constant under the condition of no tD:_In(_) Aw(0). (28)
energy exchange between the system and its environment. In A\D

the case of Eq.19) the energy exchange between system and o o
environment is negligible for any observation made in the. DU€ to the fact that deterministic chaos is simulated by
time scale Zurek and Paz13] by means of an inverted parabola, these

authors did not consider the entropy saturation effects. How-
t<1/y. (20)  ever, it is straightforward to evaluate the saturation effect
with heuristic arguments concerning the case where the total
To ensure that the system entropy increase takes place witplume of the phase space has the finite vafuérom the
no energy exchange between system and its environmefifne t=tp on, the distribution voluméJ(t) increases expo-
Zurek and Paf13] set the condition of E(20) and this, in ~ nentially in time with the following expression
turn, allows them to neglect the friction term in E@.8).

Then, these authors adopted the modes U(t)=Aw(0)Au(0)exp()\t)=(D/)\)l’zAu(tD)exp()\tg.9)
2
u= %H\x (21)  Thus, the saturation time is now given by
== v 30
and =3 M Xu(0)aw(0) || (30)
w= 3_)(_)\)( (22)  Using Eq.(25 we can write this saturation time as
t L
1 vV
which make it possible for them to split E€L8) into ts=yIn 00|’ (39)
du which coincides with Eqs(17) and(13).
a‘“‘(””“) 23 We think that the reader can easily realize at this stage
why the Kolmogorov regime shows up in all the papers of
and Refs.[7,13-19.
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Of remarkable clarity is the paper by Pattanayd] * B.(x) .
which shows indeed a surprising similarity with the three p(X,t)=1+> exp(—yjt)’.—l[p(lfl)(l,O)
regimes of Latora and Baranggf]. We invite the reader to =1 I*
keep in mind that we plan to prove that the emergence of this —pi=1(0,0]. (34)

Kolmogorov regime is the consequence of the simplifying
condition of the Lyapunov coefficient being independent of\ote that y;=j In 2, B;(x) are the Bernoulli polynomials
the coordinatec of the phase space. 25] andp(”)J(x,t) denotes thath order derivative op(x,t)
Before ending this section we want to notice that the kindyjith respect tox. Hereby, we shall show how to derive from
of transport equations used by the authors of Réf8-19  Eq. (34) an expression more appropriate to our purposes.
can be derived from a Liouville equation using a projection |n the case of an initial condition close to equilibrium,
approach method24]. This is a kind of contraction over resulting from the sum of the equilibrium distribution and the
“irrelevant” variables, whose effect is that of making en- fjst “excited” state, it is easy to prove that the entrot)
tropy increase. This means that the coarse graining resting Qi gq. (4) reaches exponentially in time the steady state con-
the role of the stochastic force is closely related totthe- dition. This suggests that the Kolmogorov regime, where the
ing mentioned by Macke23] as a second source of entropy entropyS(t) is expected to be a linear function of time, must
increase. The main difference is that the adoption of the projmply an initial condition with infinitely many “excited”
jection method has the effect of producing a new transporgtates. To deal with a condition of this kind it is convenient

equation, which is the sum of two termS, the former St|”t0 express Eq(34) in an equiva'ent form given by
maintaining the invertible properties of the standard Liou-

ville equations, the latter corresponding to a diffusionlike * +B;(x) o
correction, whose strength determines the time it takes the p(X,t)Zl-i-E - (—izw) p(w)
system to make a transition to thermodynamics. =1 )

dw
X[exp —iw)—1]5—, (35)
I1l. THE BERNOUILLI MAP 2

This section is devoted to a rigorous treatment based onlyyherez=exyd —t(In 2)] andp(w) is related to the initial con-
on the time evolution of distribution density, as resulting dition p(x,0) by the Fourier transform
from the transport equation, with no use, either direct or
indirect of the concept of trajectory. We use the theoretical +oo ) do
tools described in Ref.10]. We focus our attention on the P(X,O):f _plo)exp—ioX)5—. (36)
Bernoulli shift map,

The following equation

X1 1= 2%(mod1). (32 * Bi(x) exp(zx)
i) i

& P fexpn) -1

(37)
The Frobenius-Perron equation of this map is defineflby
is known[25] to generate Bernoulli polynomials. Using this

17 [x x+1 Bernoulli polynomial generatrix, we arrive, after some alge-
p(X,t+l)=Ap(X,t)E§ p E’t +p T’t . (33 bra, at
(x.0) J+°° (=i Y )exq—iw)—l do
x,t)y=z exp—iwzX)p(w)—————> 7—.
It is straightforward to show that the Frobenius-Perron op- P — P exd—iwz)—1 2
erator of Eq.(33) stems from the contraction over the vari- (38

able y of the baker's mapping, acting in fact on the unit , ) ,

square of two-dimensional spacey) (see, for instance Ref. BY €xpanding the denominator of E(S8) into a Taylor

[21])). It is shown[21] that the KS entropy of the baker's SEres a_nd using E36), we finally derive the fundamental

transformation is well defined and turns out to be the same a8XPression

that of the Bernoulli shift map, namelhxs=In2. Intu- o

itively, _this_ suggests that the main role of_the tracing is_ that p(X,t)=ZE [p(zx+2n,0)— p(zx+2zn+1,0)]. (39

of making inactive the process of contraction, and with it the n=0

negative Lyapunov coefficient. Of course, as earlier re-

marked(see Sec. lwe do not expect any regime of transi- This important expression makes it possible for us to discuss

tion to thermodynamics. We expect that the time evolutionanalytically the entropy time evolution ensuing the prepara-

of the density entropy will be characterized only by the Kol-tion of an initially very sharp distribution. Let us consider in

mogorov and saturation regime. fact
To address this issue according to the prescription of Ref.

[10], we express the distribution density at titnander the

form given by Ref[10] which reads p(x,0)=

a
meXK—a’X),O$X$ 1. (40)
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For a— oo this initial distribution becomes a very sharp dis- We have to set again the condition that the initial distribution

tribution located ak=0. By plugging this initial distribution is very sharp. Thus we make the assumpfior 0, yielding

density into Eq(39) we obtain A~1/m. We plug this approximated value Afinto Eq.(39),
thereby obtaining the following density time evolution

= exp(— axz) 41
P20 o ey “
o o . _ I & 1
It is evident that this simple analytical expression for the p(x,t)=— > s
time evolution of the distribution density is exact, and corre- T n=0 [ (zx+zn—Xo)*+ T

sponds to the time evolution dictated by the Frobenius- 1
Perron operator of E(33). _

We are now in a position to discuss the central issue of (zx+zn—Xxo+1)%+12
this paper, namely, the time evolution of the density entropy
of Eq. (4), which, in the case here under study, reads

. (47)

We are now in a position to study the entropy time evo-

S(t)=— fxp(x,t)ln[p(x,t)]dx, 42) lution again. Plugging Eq47) into Eq. (42) we find
with X now denoting the interval0,1]. By plugging Eq.(41) j | z i 1
within Eq. (42) we obtain S(t)=— XP(Xat) i) R “ (zx+zn—x0)2
—1-| In[1 a2 !
S(t)y=1—-In(az)+In[ —exq—az)]—W. .

43 -

“3 Zx+zn—Xo+1\2 dx
In the limiting casea— o this exact prediction is approxi- r +
mated very well by

z
S(t)=—1In(a)+(In2)t. (44) :—fxp(xi)'”(w—r)dx

It indicates that a sharp initial distribution makes the Kol- * 1
mogorov regime emerge immediately with no preliminary —f p(X,t)In > —
regime of transition to thermodynamics, in a full accordance X n=o0 | [ZX+zn XO)
with our expectation. The saturation regime is still present. It r
is straightforward to show that the saturation tinhg
=In «ofIn 2 resulting from Eq(43) is the same as that of Eq. _ 1 dx (48)
(13) in the casev=1. In fact using Eq(16) andV=1 we ZX+zn—Xxo+1\2 ‘
obtain thatW,,,,/W(0)=1/U(0), whereU(0) is the size of T +1

the initial distribution. The size of the initial distribution of

Eq. (40), for a—o, becomes proportional to &/ Thus,

In a~In[Wo/W(0)] in accordance with E¢(13). In the limiting case of” very small, it is possible to derive a
This is an elegant result, involving a modest amount ofmore tractable expression as follows. The argument of the

algebra. However, it refers to an initial distribution located atlogarithm is a series whose terms are the differences between

x=0. We want to prove that this is a general property, indetwo contributions. These contributions are almost zero, ex-

pendent of where the initially sharp distribution is located, atcept forn=—[x]+[Xq/z]=[Xo/z] (first contribution, and

the price, as we shall see, of a more complicated mathematior n=—[x]—[(1—xg)/z]=—[(1—X)/z] (second contri-

cal treatment. For this purpose we study the case where thgution). Note that, as usual, we denote[by the integer part

distribution shape is the Lorentzian curve, of the number. The condition making different from zero the

second contribution is never realized, sintés a positive

integer. Thus the whole series is reduced to only one term,

which is the first contribution withn=—[x]+[Xy/z]

=[Xo/z], thereby making the entropy(t) read as follows:

p(x,00=A (49)

(X—Xg)2+T2’

with x, being a generic point of the interv@D,1] and x
running in the same interval. Setting the normalization con-

dition yields 2rIn(y?+1
y S(t)=InT+(In2)t—In w—J %dy, (49
1 o y+1
A= Xo 1-Xp| " (46)
arctan - | +arctan — which, in the limiting case/T'—, becomes
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1 =In(y?+1 !
S(t)~—In=+(In2)t—In “‘f ny™+d . S(t+ 1)—S(t)=—f dxp(x,t+1)In[ p(x,t+1)]dx
r o y?+1 0
1
it (n2)t-in - win2 + oot 69
~—Inl+(ln ). (50 We replace Eq(53) into Eqg. (55). In the resulting expres-

sion, we make the change of integration variakle f(x).
All this, after some algebra, yields:

r

As in the earlier case, the validity of the approximation
yielding the linear dependence §ft) on time, is broken at
the timet~ (In1/T")/In 2. In conclusion, the Kolmogorov re-
gime is realized by very sharp initial distributions.
We would be tempted to believe that the tracing is a way ‘@
of ensuring a correspondence with the asymptotic arguments L(t)=— f dxp(x,t)In
0

S(t+1)—S(t)=L(t)+R(t), (56)

where

of Hilborn [4] and Goldsteir{6]. In fact, there is no transi- 1+zx 1t
tion to thermodynamics. Thus we can conclude thatIfor
—0 in Eq.(50), or a— in Eq. (44), an unlimited Kolmog- N 1 pf (1) +1),t)
orov regime emerges, fitting the theoretical prediction of Hil- 1+ f(F L)+ 1)]? L p(x.1)
born[4]. However, this attractive result is limited to the case
where the Lyapunov coefficient is independent of the phase (57
space coordinate. In Secs. IV and V we shall show that in
general this attractive property is lost. and

1
IV. THE TIME DEPENDENT LYAPUNOV COEFFICIENT R(t)= —f dxp(x,t)In| ———

£(1) 1+zx 1

Let us consider the case of the Manneville njag|
N 1 pF((F7H(x)—1),t)
X[+1:Xt+X§(m0dl) (51 1+Z[f(f_1(X)—l)]Z_l p(X.t) ’
with z>1. This map is known to be characterized by two (58)
regions, a laminar region ranging froxs0 to x=d(z)<1, We note that the functiorfi(x) fits the conditionsf(0)
and a qhaotlc region ranging frod(z) to 1. The valued is =0 andf(1)=d(z), whered(z) is given by the solution of
determined by Eq. (52). The termsR(t) and S(t), contributing the right-
hand side of Eq(56), correspond to the laminar and chaotic
1=d(2)+d(2)* (520 region, respectively. Let us consider an initial condition with

a sharp distribution density close xo=0 and not overlap-
The laminar region on the left is responsible for only a lim-ping with the chaotic region. It takes several steps for the
ited amount of entropy increase, since the trajectories of adistribution to broaden so as to overlap with the chaotic re-
initial distribution very sharp and imbedded within the lami- gion. For this extended period of tin@7] R(t) and the
nar region will depart very slowly from one the other. The second term within the square brackets at the right-hand side

Frobenius-Perron operator in this case reads, of Eqg. (57) vanish. As a consequence the rate of entropy
increase reads as follows:

1 f(1l
p(xt+1)= —Hzf(x)zfl‘p(f(x),t)wt T42f(xt 1)t S(t+1)—S(t)= fo( )pr(x,t)In(1+zxZ*1). (59
Xp(f(x+1),1). (53 . NN .
Note that this expression is reminiscent of the expression
afforded by Pesin theorem, with(1) replaced by 1 and
p(x,t) replaced by the invariant distribution. This expression
would provide the KS entropy, namely, the steady entropy
x=f(x)+f(x)* (54 increase of a stationary trajectory. However, the invariant
distribution is reached moving from an initial out of equilib-
Although Eq.(53) cannot be easily used to determine therium condition as a result of trajectories crossing several
time evolution of the distribution density, it can be adopted,times the border between the laminar and the chaotic region.
however, to determine the rate of increase of the entropy of his would provoke the breakdown of the condition ensuring
Eq. (4). First of all we find the validity of Eq.(59).

Heref(x) is the solution of the following equation
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We note that az=1 the Manneville map becomes iden- if we adopt as “time” the number of times this random
tical to the Bernouilli map studied in Sec. Ill. However, in number is selected, the entropy of the system increases as
spite of the fact that Eq59) yields the correct expression for follows:
the KS entropy in this case, the conditinr 1 is incompat-
ible with the existence of a laminar region. As illustrated in S(N)=NIn2. (63
Ref. [28], even ifz—1 is very small, but nonvanishing, a
region close enough t&=0 can be found so that a sharp However, the physical time is that involved by Eq(62),
initial distribution, located in that region, can broaden forand a more proper picture of the entropy increase as a func-
several time steps without overlapping with the chaotic relion of time is given by
gion. The case=1 is a singularity forcing us to use the .
theory of Sec. Ill, which cannot be derived from the theoret- _ r (4
ical approach of this section. All this should make clear that N(t)= det ), (64)
the emergence of the Kolmogorov regime, in accordance
with the arguments of Sec. Ill, rather than being an ordinarywhereT is a time of the order of the time it takes a sharp
condition, is a singularity of a more general condition whereinitial distribution to broaden till it touches the bordes 1.
the Kolmogorov regime cannot emerge. The functionC(t) of Eq. (60) is the number of times the

It is interesting to notice that the results of this section ararajectories of a given Gibbs set are injected back into the
reminiscent of those of Ref§16-19. In fact these authors interval [0,1] per unit of time. This has to do with the en-
did succeed in relating the rate of the density entropy to theropy increase, as a consequence of the fact that the process
Lyapunov coefficient. It has to be remarked, though, that thef injection back is random. We assume that the probability
success of their attempt, even in the case where the ordinasf injection back is uniform thereby making this process
Lyapunov coefficient would depend on the phase space caquivalent to the random drawing of a number of the interval
ordinates, is made possible by the adoption of a generalize@.1]. This is why the integral of Eq(64) is identified with
form of entropy and of Lyapunov coefficient. In the casethe numbem of Eq. (63).
where we use the ordinary entropic indicator and the ordi- The solution of Eq.(60) yields, after some algebra, the
nary Lyapunov coefficient, this result is only possible whenfollowing result. Forz<2, in the time asymptotic limit of
the Lyapunov coefficient is independent of the phase space,« the functionC(t) becomes proportional to-2z. If z

coordinates. >2, fort—o the functionC(t) tends to zero. These results
agree with the earlier findings of ReR9]. In spite of the
V. THE CASE OF SPORADIC RANDOMNESS fact that the dynamic system of E@O) is not equivalent to

the Manneville map, the essence of sporadic randomness is
To make more compelling our arguments on the conflickhe same in both systems, and we can use the earlier analyti-
between the adoption of the trajectories and distribution denca| results to Support the main conclusion of this paper. The
sity perspective, let us consider the following equation ofks entropy of the Manneville map is evaluated using time
motion for the distribution density(x,t): windows so large as to correspond to the single trajectory
jumping back from the chaotic into the laminar region a
number of times. If we adopt the perspective of considering
the transport equation as the only theoretical prescription to
evaluate the density entropy, this immediately implies that
the density entropy corresponding to the KS entropy is time
independent.
Equilibrium is the result of a balance between the first and
second term on the right-hand side of E80). The first term
) _ _ . corresponds to the trajectories moving from the left to the
The physical meaning of this equation is clear. It corre-rigp¢ \ith no entropy productioriwith no significant en-
sponds to the distribution density representation of a dynam[—ropy production in the case of the Manneville rap
ics process that in terms of single trajectories corresponds Qhereas the second term corresponds to a significant entropy
the following simple picture. A trajectory moves from the o4y ction that becomes steady at equilibrium. However, we
initial .COI"IdItIOI’] >§(0) in the interval G<x<1 driven by the -5, recognize this process of entropy production only if we
equation of motion use C(t) to count the trajectories jumping back from the
chaotic region, namely, if we depart from the distribution
dx/dt=x* (62)  density perspective forced upon us by the definition of den-
sity entropy of Sec. I. In this specific case, there is no room
When the trajectory reaches the border 1 it is abruptly left for the emergence of the Kolmogorov regime of the den-
injected back in the interval €x<<1. The probability of sity entropy. In fact, an out of equilibrium condition in this
getting any valuex of this interval is uniform. This is the case would imply a departure from the steady condition re-
source of randomness, and the choice of this value could bsulting in the KS entropy. The KS entropy corresponds to
made by means of the Bernouilli map, so that the Kolmog-time windows of so large size as to imply that the distribu-
orov entropy associated to this choice is In 2. This means thdton densityp(x,t) coincides with the invariant distribution.

1%

J
SPu==— D]+ C,  (60)

where 0=x<1 and

C(t)=p(1y). (61
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VI. CONCLUDING REMARKS tropy of Sec. I. We note that the study of quantum dynamic

A simple way to account for our conclusions rests on theProcesses would make it impossible to depart from our defi-

observation that when the Gibbs probability distribution is afhition of densny er_1tropy. . S
equilibrium, so that the density entropy is time independent, ©OUr conclusion is that setting an out of equilibrium initial
still the microscopic trajectories keep running and are assgeondition might not be enough for the density entropy to
ciated with a steady entropy increase, the KS entropy, if 46v€al the underlying KS entropy. A promising direction
sufficiently large time window is used to make this observa-S€ems to be that adopted by many authors with thermostating
tion. The picture afforded by E60) is illuminating. In fact, algorithms[30—34, flux boundary condition$35,36], and

at equilibrium, the functiol©(t), which represents the action €scape conditiofi37,38. For updated literature on these ap-
of randomness, is constant, thereby implying a steady erProaches the interested reader can consult the recent paper of
tropy increase. Yet, in this condition the density entropy isRef. [39]. For the technical and conceptual difficulties con-
constant. Thus, the KS entropy is a trajectory property thatgerning the information content of a chaotic trajectory, the
in general, cannot be recovered from the time evolution ofnterested reader can consult Sec. 8.11 of the last book of one
the out of equilibrium density entropy. Different conclusions, of the authors of this field of resear¢d0]. Here we limit
namely, an out of equilibrium regime can be always foundourselves to pointing out that the constraints adopted by
where the rate of increase of the density entropy coincidethese authors realize steady out of equilibrium conditions,
with the KS entropy, are seemingly derived from the earlierather than an out of equilibrium initial condition with a
work of other group$6,7]. This is due to the fact that these subsequent regression to equilibrium. It might be the subject
authors depart from our definition of denisty entropy. In theof future interesting research work to establish if the experi-
case of Ref[7], for instance, the authors study the time mentally observable properties realized by these constraints
evolution of the density entropy with different initial condi- can be related to the microscopic KS entropy without depart-
tions, and then evaluate the mean rate of entropy increaseg from the definition of density entropy adopted in this
which, of course, cannot be reproduced by the density erpaper.
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