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Trajectory versus probability density entropy
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We show that the widely accepted conviction that a connection can be established between the probability
density entropy and the Kolmogorov-Sinai~KS! entropy is questionable. We adopt the definition of density
entropy as a functional of a distribution density whose time evolution is determined by a transport equation,
conceived as the only prescription to use for the calculation. Although the transport equation is built up for the
purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory
time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the
detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible
only in a limited number of cases. The proposals made by some authors to establish a connection between the
two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is
foreign to that of density entropy.
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I. INTRODUCTION

The so called Kolmogorov-Sinai~KS! entropy @1,2#,
calledhKS , is a property of a time sequence of symbols a
can be interpreted as the mean entropy increase per un
time. In the case of a dynamic system the sequence of s
bols is generated by a trajectory running through a ph
space divided into many cells of finite size and labeled w
given symbols. In this case this important form of entro
can be related to the Lyapunov coefficients of the traject
under study through the well known expression, derived
Pesin@3#,

hKS5E dxreq~x! (
i ,l i (x).0

l i~x!. ~1!

Here the symbolsl i denote the Lyapunov coefficients, an
the sum on the right side of this equation refers only to
positive Lyapunov coefficients. The symbolreq denotes the
invariant measure. From an intuitive point of view we c
say that when the size of the time windows used to determ
the KS entropy of the symbolic sequence is so large that
trajectory explores within that time window the whole pha
space, the resulting entropy increase reflects the mean o
sum of all positive Lyapunov coefficients.

It seems to be evident, on the basis of this express
that, if the Gibbs distribution density perspective is adopt
the physical condition corresponding to Eq.~1! is statistical
equilibrium, thereby implying that the distribution densi
entropy is constant. This is the reason why a connec
between the two forms of entropy, if it ever exists, can o
be obtained by considering initial conditions for the distrib
tion density that are far from equilibrium. From an intuitiv
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point of view establishing a connection between the t
forms of entropy is straightforward, especially in the case
systems with only one Lyapunov coefficient~maps! indepen-
dent of the positionx. In fact, the nonequilibrium entropy
increase is easily related to the local Lyapunov coefficie
which, due to the Pesin theorem of Eq.~1!, coincides in this
case with the KS entropy. For a tutorial demonstration
reader can consult, for instance, the book of Hilborn@4#. A
much more sophisticated mathematical approach is neede
address the problem in general. This was already done
early as 19 years ago by Goldstein and Penrose@5# and Gold-
stein @6#. Of special interest is the second paper, where
nonequilibrium entropy introduced by Goldstein and Pe
rose, defined on nonstationary probability measures, is qu
titatively related to the KS entropy of the system.

The main purpose of the present paper is that of revisit
this important issue from a perspective more familiar
physicists, a significant example of which is given by t
recent work of Latora and Baranger@7#. These authors found
that the nonequilibrium entropy increase of invertible ma
is characterized by three distinct regimes. The first is are-
gime of transition to thermodynamicslasting for a given time
tD . The second is a regime of entropy increase linear
time, lasting from the timetD to the timetS.tD . Latora and
Baranger@7# proved that the rate of entropy increase of th
regime coincides with the KS entropy, and for this reason
call it Kolmogorov regime. Finally, the third regime, con-
cerning timest.tS , corresponds to equilibrium, and the di
tribution density entropy is time independent. We refer to
assaturation regime.

To properly discuss these results we have to define
concept of density entropy. Our definition of density entro
is close to thephysical entropyof Latora and Baranger@7#,
which, in turn, is nothing but the Gibbs entropy. We use t
termdensityrather thanphysicalto avoid the impression tha
we judge the density entropy to be more fundamental t
the trajectory entropy. Furthermore, as clearly pointed out
©2001 The American Physical Society23-1
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Lebowitz @8,9#, in accordance with Boltzmann’s point o
view, the relevant entropy for understanding the time evo
tion of macroscopic systems is the Boltzmann entropy
not the Gibbs entropy.

This is not the issue under discussion in the present pa
We do not take position on whether trajectories are m
fundamental than densities, or vice versa, and on whe
mixing type of behavior is essential or not for the irreversib
behavior of macroscopic systems. We limit ourselves to
guing that our definition of density entropy might be incom
patible with the emergence of the KS regime, and this d
nition, as we shall see in the concluding remarks of Sec.
makes it impossible for us to adopt the expedient of Lat
and Baranger themselves@7# to deal with the case of non
constant Lyapunov coefficients. We assume first that atrans-
port equationexists. This transport equation can be the Lio
ville equation

]

]t
r~x,t !52 iLr~x,t !, ~2!

valid in the case of Hamiltonian systems, or the Frobeni
Perron equation,

r~x,t11!5Lr~x,t !, ~3!

valid in the case of low-dimensional maps@10#. Actually, we
shall discuss in this paper only the second type of trans
equation. However, our remarks on invertible maps ap
also to the case of Hamiltonian systems and thus to the
kind of transport equations.

We define the density entropy as the time dependent
tropy given by

S~ t !52E
X
r~x,t !ln@r~x,t !#dx ~4!

with the request that the time evolution of the distributi
densityr(x,t) be given by the transport equation andonly by
the transport equation. We shall show that if this definition
density entropy is adopted, then the emergence of the K
mogorov regime is not guaranteed in general, but only in
case of Lyapunov coefficients independent of the coordin
x.

From a rigorous point of view, the adoption of this de
nition of density entropy would prevent us from adopting t
heuristic arguments of Sec. II, which are based on a wid
accepted conviction that the time evolution of the distrib
tion density coincides with the result that one would obt
evaluating the time evolution of many trajectories with init
conditions fitting the initial distribution density. This widel
accepted perspective has been recently criticized by Petr
and Prigogine@11,12#. These authors pointed out that the
exists a sort equivalence between the case of Hamilto
systems with infinitely many degrees of freedom and lo
dimensional chaotic systems. In both cases the operator
ing the transport equation, expanded on a suitable basis
becomes a matrix of infinite size. In both cases the diago
ization of this matrix of infinite size has to be done usi
sophisticated methods, implying the use of analytical c
01622
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tinuation. The remarks of these authors@11,12# imply that
the asserted equivalence between a statistical picture b
on trajectories and one based on distribution density mus
used with caution.

It is not clear to us if the conclusions of the present pa
might be related to the breakdown of the concept of traj
tory, claimed by these authors@11,12#. This is still a contro-
versial issue that we do not want to address here. We refe
Refs.@10–12# only as examples of a perspective that wou
be in line with our definition of density entropy, not involv
ing at any extent the concept of trajectory. It is immediate
evident that the definition of density entropy here adop
does not allow us to apply the method of Latora a
Baranger@7#. These authors, in the case of the standard m
evaluated the time evolution ofS(t) with different initial
conditions, and then determined the time evolution of
average entropyS(t), a prescription conflicting with our
definition of density entropy. It is not clear to us if this de
nition also conflicts with the prescription adopted by Go
stein @6#. We think it does since Goldstein’s prescription
based on a partition into cells depending upon trajectory
namics.

II. HEURISTIC ARGUMENTS

The purpose of this section is that of providing a simp
explanation for the three regimes detected by Latora
Baranger@7#. We want also to convince the reader about t
physical significance of the definition of density entro
given in Sec. I. To give further support to that definition w
establish a connection between the work of Latora a
Baranger@7# and the work of other authors@13–19#. These
authors deal with quantum rather than classical processe
the case of quantum processes, there are no trajectories a
able and one is forced to adopt a definition of density entro
coincident with that of Sec. I. Nevertheless, the adoption
heuristic arguments based on the classical trajectories is
gitimate, provided that they do not conflict with the prescr
tions of Sec. I to evaluate the time evolution of density e
tropy

Note that the cases studied by Latora and Baranger@7# are
two dimensional, and our discussion here refers to a tw
dimensional case, too. The baker’s transformation reads

xt1152xt

~5!
yt115yt/2,

for 0<xt<1/2, and

xt1152xt21
~6!

yt115~yt11!/2,

for 1/2<xt<1.
We adopt here the same heuristic arguments as those

by the authors of Ref.@20#. We divide the phase spaceX into
Wmax cells of equal size. We considerN distinct trajectories
corresponding to different initial conditions, and mimickin
a distribution density concentrated in a small portion of t
3-2
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TRAJECTORY VERSUS PROBABILITY DENSITY ENTROPY PHYSICAL REVIEW E64 016223
whole phase space. We make the assumption that at all t
in any cell there is the same number of trajectories. T
means that the probability of finding a trajectory in a giv
cell is 1/W(t), whereW(t) is the number of cells containin
trajectories. As a consequence of these assumptions, we
tain

S~ t !5 ln W~ t !. ~7!

We denote byl the positive Lyapunov coefficient, and w
set

W~ t !5W~0!exp~lt !. ~8!

By plugging Eq.~8! into Eq. ~7! we get

S~ t !5lt2 ln W~0!, ~9!

which corresponds to the Kolmogorov regime of Latora a
Baranger@7#. In fact, the slope of this linear function of tim
is the Lyapunov coefficientl, which is related to the KS
entropy through Eq.~1!. A more rigorous approach to th
coarse-graining procedure necessary to establish a con
tion between the Gibbs entropy and the KS entropy can
found in Ref.@5#. For all this to hold true, it is necessary th
the positive Lyapunov coefficient is independent ofx. This
condition is fulfilled by the baker’s transformation, for whic
it is well known @21# that

l5 ln 2. ~10!

In conclusion, we establish the following attractive conne
tion between the density entropyS(t) and the KS entropy

dS

dt
5l5 ln 25hKS . ~11!

We have used arguments based on the trajectory instabil
However, the conclusion is not incompatible with our de
nition of density entropy, as confirmed by the calculations
Sec. III that do not rest on the existence of trajectories.

The Kolmogorov regime is not infinitely extended. It h
an upper bound, given by the fact that when equilibrium
reached, even in the merely sense of a coarse-grained
librium, then the entropy stops increasing. An estimate
this time is obviously given by the solution of the followin
equation

ln Wmax5lt2 ln W~0!, ~12!

which yields the following saturation time,

tS5
1

l
lnS Wmax

W~0! D . ~13!

We have now to find the lower bound of validity of th
Kolmogorov regimetD . This depends on the fact that th
initial distribution might include a large number of cells. L
us assume that the size of this distribution along the coo
natey is L, and that the size of the cells ise with e,L. Then
it is evident that, in spite of the coarse graining, the to
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number of cells occupied remains the same for a while. T
time is easily estimated using the equation

L exp~2lt !5e, ~14!

which in fact defines the time at which the distribution vo
ume, and consequently, the system entropy starts increa
This time is denoted by the symboltD and reads

tD5
1

l
lnS L

e D . ~15!

Now we are in a position to evaluate the time duration
the Kolmogorov regime, and to assess under which con
tions it can become infinitely extended in time. We denote
U(t) the volume of the distribution density at timet and by
V the volume of the phase space, thereby implying t
U(t)<V. We note that

Wmax

W~0!
5

V

U~0!
, ~16!

whereV is the total volume of the phase space andU(0) is
the initial volume of the distribution density. Thus the Ko
mogorov regime shows up in the following time interval,

tD5
1

l
lnS L

e D,t,tS5
1

l
lnS V

U~0! D . ~17!

The time duration of the regime of validity of the Kolmog
orov regime can be made infinitely extended by making
cell size infinitely small. This means that the conflict b
tween the KS entropy prescription and the time indep
dence ofS(t) can be bypassed by focusing our attention
the intermediate region, whose time duration tends to infin
with e→0. We note that a choice can be made such t
V/U(0)5(L/e)x, with x.1. This means that the onset o
the saturation regime can be madex times larger than the
onset of the Kolmogorov regime. Fore→0 both time dura-
tions become infinite, thereby showing that a Kolmogor
regime of infinite time duration can be obtained at the pri
however, of waiting an infinitely long time for the entropy t
increase. The infinite waiting time before the regime of e
tropy increase fits the observation@22,23# that the Gibbs en-
tropy of an invertible map is constant. The linear entro
increase showing up ‘‘after this infinite waiting time’’ allow
the emergence of the KS entropy from within the probabil
density perspective.

In conclusion, if we adopt the perspective of the dens
entropy defined in Sec. I, and the coarse-graining proced
implicit in the partition adopted by Latora and Baranger@7#
as well, we cannot establish a connection with the argume
of Hilborn @4# and Goldstein@6#. This is so because the Kol
mogorov regime of density entropy is an intermediate regi
occurring after a transition to thermodynamics. With redu
ing the cell size the time duration of transition to thermod
namics becomes larger and infinitely extended with a van
ing cell size, thereby postponing the physical manifestat
of KS entropy. In Sec. III we shall see that this transiti
regime can be eliminated by adopting the tracing method
3-3
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BOLOGNA, GRIGOLINI, KARAGIORGIS, AND ROSA PHYSICAL REVIEW E64 016223
The constraints posed by the adoption of the density
tropy are fulfilled also by the authors of Refs.@13–19#. This
is so because all these papers, to different extents, shar
perspective established by Zurek and Paz@13#. According to
this theoretical approach the time evolution of a quant
system, which would be chaotic in the classical limit, can
safely described by using a classical transport equation.
transport equation is the Liouville equation of Eq.~2! with a
diffusionlike correction term. This diffusionlike correctio
corresponds to the influence of a weak stochastic force.
stochastic force has a twofold role. First, it prevents the fr
mentation of the Liouville density from becoming so inten
as to activate the quantum corrections to the transport e
tion. Second, it realizes a kind of coarse graining whose
fects are essentially indistinguishable from those resul
from the partition of the phase space into cells of finite si

Let us prove this important aspect, using first of all t
inverted stochastic oscillator of Zurek and Paz@13#, namely,

d2x

dt2
5l2x~ t !1g

dx

dt
1 f ~ t !, ~18!

where the frictiong and the stochastic forcef (t) are related
to one another by the standard fluctuation-dissipation rela

^ f f ~ t !&52g K S dx

dt D
2L

eq

d~ t ![2Dd~ t !. ~19!

It is interesting to remark that the proper formulation of t
second principle implies that the entropy of a system
only increase or remain constant under the condition of
energy exchange between the system and its environmen
the case of Eq.~19! the energy exchange between system a
environment is negligible for any observation made in
time scale

t!1/g. ~20!

To ensure that the system entropy increase takes place
no energy exchange between system and its environm
Zurek and Paz@13# set the condition of Eq.~20! and this, in
turn, allows them to neglect the friction term in Eq.~18!.
Then, these authors adopted the modes

u[
dx

dt
1lx ~21!

and

w[
dx

dt
2lx, ~22!

which make it possible for them to split Eq.~18! into

du

dt
5lu~ t !1 f ~ t ! ~23!

and
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dw

dt
52lw~ t !1 f ~ t !. ~24!

Let us imagine the initial distribution density as a rec
angle of sizeDw(0) along the directionw andDu(0) along
the directionu. We keep denoting byU(t) the distribution
volume at a given timet. Thus the volume of the initial
distribution is

U~0!5Du~0!Dw~0!. ~25!

In the absence of the stochastic forcef (t), Eq. ~23! and Eq.
~24! result in an exponential increase and an exponential
crease, with the same ratel, respectively. Consequently, th
Liouville theoremU(t)5U(0) is fulfilled. In the presence o
stochastic force, we work as follows. In the former equatio
with u increasing beyond any limit, the weak stochastic for
f (t) can be neglected. This is not the case with the la
equation. In fact,w is a contracting variable in the absence
the stochastic force. In the presence of the stochastic fo
the minimum size of the distribution alongw is given by

^w2&eq
1/25~D/l!1/2. ~26!

This minimum size is reached in a time determined by
solution of the following equation

Dw~0!exp~2lt !5~D/l!1/2 ~27!

yielding

tD5
1

l
lnS l

D D 1/2

Dw~0!. ~28!

Due to the fact that deterministic chaos is simulated
Zurek and Paz@13# by means of an inverted parabola, the
authors did not consider the entropy saturation effects. H
ever, it is straightforward to evaluate the saturation eff
with heuristic arguments concerning the case where the t
volume of the phase space has the finite valueV. From the
time t5tD on, the distribution volumeU(t) increases expo-
nentially in time with the following expression

U~ t !5Dw~0!Du~0!exp~lt !5~D/l!1/2Du~ tD!exp~lt !.
~29!

Thus, the saturation time is now given by

tS5
1

l
lnF V

Du~0!Dw~0!G . ~30!

Using Eq.~25! we can write this saturation time as

tS5
1

l
lnF V

U~0!G , ~31!

which coincides with Eqs.~17! and ~13!.
We think that the reader can easily realize at this st

why the Kolmogorov regime shows up in all the papers
Refs.@7,13–19#.
3-4
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Of remarkable clarity is the paper by Pattanayak@19#
which shows indeed a surprising similarity with the thr
regimes of Latora and Baranger@7#. We invite the reader to
keep in mind that we plan to prove that the emergence of
Kolmogorov regime is the consequence of the simplifyi
condition of the Lyapunov coefficient being independent
the coordinatex of the phase space.

Before ending this section we want to notice that the k
of transport equations used by the authors of Refs.@13–19#
can be derived from a Liouville equation using a projecti
approach method@24#. This is a kind of contraction ove
‘‘irrelevant’’ variables, whose effect is that of making en
tropy increase. This means that the coarse graining restin
the role of the stochastic force is closely related to thetrac-
ing mentioned by Mackey@23# as a second source of entrop
increase. The main difference is that the adoption of the p
jection method has the effect of producing a new transp
equation, which is the sum of two terms, the former s
maintaining the invertible properties of the standard Lio
ville equations, the latter corresponding to a diffusionli
correction, whose strength determines the time it takes
system to make a transition to thermodynamics.

III. THE BERNOUILLI MAP

This section is devoted to a rigorous treatment based o
on the time evolution of distribution density, as resulti
from the transport equation, with no use, either direct
indirect of the concept of trajectory. We use the theoreti
tools described in Ref.@10#. We focus our attention on th
Bernoulli shift map,

xt1152xt~mod1!. ~32!

The Frobenius-Perron equation of this map is defined by@10#

r~x,t11!5Lr~x,t ![
1

2 FrS x

2
,t D1rS x11

2
,t D G . ~33!

It is straightforward to show that the Frobenius-Perron
erator of Eq.~33! stems from the contraction over the va
able y of the baker’s mapping, acting in fact on the un
square of two-dimensional space (x,y) ~see, for instance Ref
@21#!. It is shown @21# that the KS entropy of the baker’
transformation is well defined and turns out to be the sam
that of the Bernoulli shift map, namely,hKS5 ln 2. Intu-
itively, this suggests that the main role of the tracing is t
of making inactive the process of contraction, and with it t
negative Lyapunov coefficient. Of course, as earlier
marked~see Sec. II! we do not expect any regime of trans
tion to thermodynamics. We expect that the time evolut
of the density entropy will be characterized only by the K
mogorov and saturation regime.

To address this issue according to the prescription of R
@10#, we express the distribution density at timet under the
form given by Ref.@10# which reads
01622
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r~x,t !511(
j 51

`

exp~2g j t !
Bj~x!

j !
@r ( j 21)~1,0!

2r ( j 21)~0,0!#. ~34!

Note that g j[ j ln 2, Bj (x) are the Bernoulli polynomials
@25# andr (n)(x,t) denotes thenth order derivative ofr(x,t)
with respect tox. Hereby, we shall show how to derive from
Eq. ~34! an expression more appropriate to our purposes

In the case of an initial condition close to equilibrium
resulting from the sum of the equilibrium distribution and t
first ‘‘excited’’ state, it is easy to prove that the entropyS(t)
of Eq. ~4! reaches exponentially in time the steady state c
dition. This suggests that the Kolmogorov regime, where
entropyS(t) is expected to be a linear function of time, mu
imply an initial condition with infinitely many ‘‘excited’’
states. To deal with a condition of this kind it is convenie
to express Eq.~34! in an equivalent form given by

r~x,t !511(
j 51

` E
2`

1`Bj~x!

j !
~2 izv! j 21r̂~v!

3@exp~2 iv!21#
dv

2p
, ~35!

wherez[exp@2t(ln 2)# andr̂(v) is related to the initial con-
dition r(x,0) by the Fourier transform

r~x,0!5E
2`

1`

r̂~v!exp~2 ivx!
dv

2p
. ~36!

The following equation

(
j 50

`
Bj~x!

j !
zj5z

exp~zx!

exp~z!21
, ~37!

is known@25# to generate Bernoulli polynomials. Using th
Bernoulli polynomial generatrix, we arrive, after some alg
bra, at

r~x,t !5zE
2`

1`

exp~2 ivzx!r̂~v!
exp~2 iv!21

exp~2 ivz!21

dv

2p
.

~38!

By expanding the denominator of Eq.~38! into a Taylor
series and using Eq.~36!, we finally derive the fundamenta
expression

r~x,t !5z(
n50

`

@r~zx1zn,0!2r~zx1zn11,0!#. ~39!

This important expression makes it possible for us to disc
analytically the entropy time evolution ensuing the prepa
tion of an initially very sharp distribution. Let us consider
fact

r~x,0!5
a

12exp~2a!
exp~2ax!,0<x<1. ~40!
3-5
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BOLOGNA, GRIGOLINI, KARAGIORGIS, AND ROSA PHYSICAL REVIEW E64 016223
For a→` this initial distribution becomes a very sharp di
tribution located atx50. By plugging this initial distribution
density into Eq.~39! we obtain

r~x,t !5za
exp~2axz!

12exp~2az!
. ~41!

It is evident that this simple analytical expression for t
time evolution of the distribution density is exact, and cor
sponds to the time evolution dictated by the Frobeni
Perron operator of Eq.~33!.

We are now in a position to discuss the central issue
this paper, namely, the time evolution of the density entro
of Eq. ~4!, which, in the case here under study, reads

S~ t !52E
X
r~x,t !ln@r~x,t !#dx, ~42!

with X now denoting the interval@0,1#. By plugging Eq.~41!
within Eq. ~42! we obtain

S~ t !512 ln~az!1 ln@12exp~2az!#2
az

exp~az!21
.

~43!

In the limiting casea→` this exact prediction is approxi
mated very well by

S~ t !52 ln~a!1~ ln 2!t. ~44!

It indicates that a sharp initial distribution makes the K
mogorov regime emerge immediately with no prelimina
regime of transition to thermodynamics, in a full accordan
with our expectation. The saturation regime is still presen
is straightforward to show that the saturation timetS
5 ln a/ln 2 resulting from Eq.~43! is the same as that of Eq
~13! in the caseV51. In fact using Eq.~16! and V51 we
obtain thatWmax/W(0)51/U(0), whereU(0) is the size of
the initial distribution. The size of the initial distribution o
Eq. ~40!, for a→`, becomes proportional to 1/a. Thus,
ln a'ln@Wmax/W(0)# in accordance with Eq.~13!.

This is an elegant result, involving a modest amount
algebra. However, it refers to an initial distribution located
x50. We want to prove that this is a general property, in
pendent of where the initially sharp distribution is located,
the price, as we shall see, of a more complicated mathem
cal treatment. For this purpose we study the case where
distribution shape is the Lorentzian curve,

r~x,0!5A
G

~x2x0!21G2
, ~45!

with x0 being a generic point of the interval@0,1# and x
running in the same interval. Setting the normalization c
dition yields

A5
1

arctanS x0

G D1arctanS 12x0

G D . ~46!
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We have to set again the condition that the initial distributi
is very sharp. Thus we make the assumptionG→0, yielding
A'1/p. We plug this approximated value ofA into Eq.~39!,
thereby obtaining the following density time evolution

r~x,t !5
zG

p (
n50

` F 1

~zx1zn2x0!21G2

2
1

~zx1zn2x011!21G2G . ~47!

We are now in a position to study the entropy time ev
lution again. Plugging Eq.~47! into Eq. ~42! we find

S~ t !52E
X
r~x,t !lnS z

pG (
n50

` F 1

S zx1zn2x0

G D 2

11

2
1

S zx1zn2x011

G D 2

11G D dx

52E
X
r~x,t !lnS z

pG Ddx

2E
X
r~x,t !lnS (

n50

` F 1

S zx1zn2x0

G D 2

11

2
1

S zx1zn2x011

G D 2

11G D dx. ~48!

In the limiting case ofG very small, it is possible to derive a
more tractable expression as follows. The argument of
logarithm is a series whose terms are the differences betw
two contributions. These contributions are almost zero,
cept for n52@x#1@x0 /z#5@x0 /z# ~first contribution!, and
for n52@x#2@(12x0)/z#52@(12x0)/z# ~second contri-
bution!. Note that, as usual, we denote by@ .# the integer part
of the number. The condition making different from zero t
second contribution is never realized, sincen is a positive
integer. Thus the whole series is reduced to only one te
which is the first contribution withn52@x#1@x0 /z#
5@x0 /z#, thereby making the entropyS(t) read as follows:

S~ t !' ln G1~ ln 2!t2 ln p2E
0

z/G ln~y211!

y211
dy, ~49!

which, in the limiting casez/G→`, becomes
3-6
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S~ t !'2 ln
1

G
1~ ln 2!t2 ln p2E

0

` ln~y211!

y211
dy

52 ln
1

G
1~ ln 2!t2 ln p2p ln 2

'2 ln
1

G
1~ ln 2!t. ~50!

As in the earlier case, the validity of the approximati
yielding the linear dependence ofS(t) on time, is broken at
the timet;(ln1/G)/ ln 2. In conclusion, the Kolmogorov re
gime is realized by very sharp initial distributions.

We would be tempted to believe that the tracing is a w
of ensuring a correspondence with the asymptotic argum
of Hilborn @4# and Goldstein@6#. In fact, there is no transi
tion to thermodynamics. Thus we can conclude that forG
→0 in Eq.~50!, or a→` in Eq. ~44!, an unlimited Kolmog-
orov regime emerges, fitting the theoretical prediction of H
born @4#. However, this attractive result is limited to the ca
where the Lyapunov coefficient is independent of the ph
space coordinate. In Secs. IV and V we shall show tha
general this attractive property is lost.

IV. THE TIME DEPENDENT LYAPUNOV COEFFICIENT

Let us consider the case of the Manneville map@26#

xt115xt1xn
z~mod1! ~51!

with z.1. This map is known to be characterized by tw
regions, a laminar region ranging fromx50 to x5d(z),1,
and a chaotic region ranging fromd(z) to 1. The valued is
determined by

15d~z!1d~z!z. ~52!

The laminar region on the left is responsible for only a lim
ited amount of entropy increase, since the trajectories o
initial distribution very sharp and imbedded within the lam
nar region will depart very slowly from one the other. Th
Frobenius-Perron operator in this case reads,

r~x,t11!5
1

11z f~x!z21
r„f ~x!,t…1

1

11z f~x11!z21

3r„f ~x11!,t…. ~53!

Here f (x) is the solution of the following equation

x5 f ~x!1 f ~x!z. ~54!

Although Eq.~53! cannot be easily used to determine t
time evolution of the distribution density, it can be adopte
however, to determine the rate of increase of the entrop
Eq. ~4!. First of all we find
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S~ t11!2S~ t !52E
0

1

dxr~x,t11!ln@r~x,t11!#dx

1E
0

1

r~x,t !ln@r~x,t !#dx. ~55!

We replace Eq.~53! into Eq. ~55!. In the resulting expres-
sion, we make the change of integration variablex→ f (x).
All this, after some algebra, yields:

S~ t11!2S~ t !5L~ t !1R~ t !, ~56!

where

L~ t ![2E
0

f (1)

dxr~x,t !lnF 1

11zxz21

1
1

11z@ f „f 21~x!11…#z21

r f ~„f 21~x!11…,t !

r~x.t ! G
~57!

and

R~ t ![2E
f (1)

1

dxr~x,t !lnF 1

11zxz21

1
1

11z@ f „f 21~x!21…#z21

r f ~„f 21~x!21…,t !

r~x.t ! G .

~58!

We note that the functionf (x) fits the conditions:f (0)
50 and f (1)5d(z), whered(z) is given by the solution of
Eq. ~52!. The termsR(t) and S(t), contributing the right-
hand side of Eq.~56!, correspond to the laminar and chaot
region, respectively. Let us consider an initial condition w
a sharp distribution density close tox50 and not overlap-
ping with the chaotic region. It takes several steps for
distribution to broaden so as to overlap with the chaotic
gion. For this extended period of time@27# R(t) and the
second term within the square brackets at the right-hand
of Eq. ~57! vanish. As a consequence the rate of entro
increase reads as follows:

S~ t11!2S~ t !5E
0

f (1)

dxr~x,t !ln~11zxz21!. ~59!

Note that this expression is reminiscent of the express
afforded by Pesin theorem, withf (1) replaced by 1 and
r(x,t) replaced by the invariant distribution. This expressi
would provide the KS entropy, namely, the steady entro
increase of a stationary trajectory. However, the invari
distribution is reached moving from an initial out of equilib
rium condition as a result of trajectories crossing seve
times the border between the laminar and the chaotic reg
This would provoke the breakdown of the condition ensur
the validity of Eq.~59!.
3-7
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We note that atz51 the Manneville map becomes ide
tical to the Bernouilli map studied in Sec. III. However,
spite of the fact that Eq.~59! yields the correct expression fo
the KS entropy in this case, the conditionz51 is incompat-
ible with the existence of a laminar region. As illustrated
Ref. @28#, even if z21 is very small, but nonvanishing,
region close enough tox50 can be found so that a sha
initial distribution, located in that region, can broaden f
several time steps without overlapping with the chaotic
gion. The casez51 is a singularity forcing us to use th
theory of Sec. III, which cannot be derived from the theor
ical approach of this section. All this should make clear t
the emergence of the Kolmogorov regime, in accorda
with the arguments of Sec. III, rather than being an ordin
condition, is a singularity of a more general condition whe
the Kolmogorov regime cannot emerge.

It is interesting to notice that the results of this section
reminiscent of those of Refs.@16–19#. In fact these authors
did succeed in relating the rate of the density entropy to
Lyapunov coefficient. It has to be remarked, though, that
success of their attempt, even in the case where the ordi
Lyapunov coefficient would depend on the phase space
ordinates, is made possible by the adoption of a general
form of entropy and of Lyapunov coefficient. In the ca
where we use the ordinary entropic indicator and the o
nary Lyapunov coefficient, this result is only possible wh
the Lyapunov coefficient is independent of the phase sp
coordinates.

V. THE CASE OF SPORADIC RANDOMNESS

To make more compelling our arguments on the confl
between the adoption of the trajectories and distribution d
sity perspective, let us consider the following equation
motion for the distribution densityr(x,t):

]

]t
r~x,t !52

]

]x
@xzr~x,t !#1C~ t !, ~60!

where 0<x<1 and

C~ t ![r~1,t !. ~61!

The physical meaning of this equation is clear. It cor
sponds to the distribution density representation of a dyn
ics process that in terms of single trajectories correspond
the following simple picture. A trajectory moves from th
initial condition x(0) in the interval 0,x,1 driven by the
equation of motion

dx/dt5xz. ~62!

When the trajectory reaches the borderx51 it is abruptly
injected back in the interval 0,x,1. The probability of
getting any valuex of this interval is uniform. This is the
source of randomness, and the choice of this value coul
made by means of the Bernouilli map, so that the Kolmo
orov entropy associated to this choice is ln 2. This means
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if we adopt as ‘‘time’’ the number of times this random
number is selected, the entropy of the system increase
follows:

S~N!5N ln 2. ~63!

However, the physical timet is that involved by Eq.~62!,
and a more proper picture of the entropy increase as a fu
tion of time is given by

N~ t !5E
T

t

dt8C~ t8!, ~64!

whereT is a time of the order of the time it takes a sha
initial distribution to broaden till it touches the borderx51.
The functionC(t) of Eq. ~60! is the number of times the
trajectories of a given Gibbs set are injected back into
interval @0,1# per unit of time. This has to do with the en
tropy increase, as a consequence of the fact that the pro
of injection back is random. We assume that the probabi
of injection back is uniform thereby making this proce
equivalent to the random drawing of a number of the inter
@0.1#. This is why the integral of Eq.~64! is identified with
the numberN of Eq. ~63!.

The solution of Eq.~60! yields, after some algebra, th
following result. Forz,2, in the time asymptotic limit oft
→` the functionC(t) becomes proportional to 22z. If z
.2, for t→` the functionC(t) tends to zero. These resul
agree with the earlier findings of Ref.@29#. In spite of the
fact that the dynamic system of Eq.~60! is not equivalent to
the Manneville map, the essence of sporadic randomne
the same in both systems, and we can use the earlier ana
cal results to support the main conclusion of this paper. T
KS entropy of the Manneville map is evaluated using tim
windows so large as to correspond to the single traject
jumping back from the chaotic into the laminar region
number of times. If we adopt the perspective of consider
the transport equation as the only theoretical prescription
evaluate the density entropy, this immediately implies t
the density entropy corresponding to the KS entropy is ti
independent.

Equilibrium is the result of a balance between the first a
second term on the right-hand side of Eq.~60!. The first term
corresponds to the trajectories moving from the left to
right, with no entropy production~with no significant en-
tropy production in the case of the Manneville map!,
whereas the second term corresponds to a significant ent
production that becomes steady at equilibrium. However,
can recognize this process of entropy production only if
use C(t) to count the trajectories jumping back from th
chaotic region, namely, if we depart from the distributio
density perspective forced upon us by the definition of d
sity entropy of Sec. I. In this specific case, there is no ro
left for the emergence of the Kolmogorov regime of the de
sity entropy. In fact, an out of equilibrium condition in th
case would imply a departure from the steady condition
sulting in the KS entropy. The KS entropy corresponds
time windows of so large size as to imply that the distrib
tion densityr(x,t) coincides with the invariant distribution
3-8
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VI. CONCLUDING REMARKS

A simple way to account for our conclusions rests on
observation that when the Gibbs probability distribution is
equilibrium, so that the density entropy is time independe
still the microscopic trajectories keep running and are as
ciated with a steady entropy increase, the KS entropy,
sufficiently large time window is used to make this obser
tion. The picture afforded by Eq.~60! is illuminating. In fact,
at equilibrium, the functionC(t), which represents the actio
of randomness, is constant, thereby implying a steady
tropy increase. Yet, in this condition the density entropy
constant. Thus, the KS entropy is a trajectory property th
in general, cannot be recovered from the time evolution
the out of equilibrium density entropy. Different conclusion
namely, an out of equilibrium regime can be always fou
where the rate of increase of the density entropy coinci
with the KS entropy, are seemingly derived from the ear
work of other groups@6,7#. This is due to the fact that thes
authors depart from our definition of denisty entropy. In t
case of Ref.@7#, for instance, the authors study the tim
evolution of the density entropy with different initial cond
tions, and then evaluate the mean rate of entropy incre
which, of course, cannot be reproduced by the density
-

try

ns

-
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tropy of Sec. I. We note that the study of quantum dynam
processes would make it impossible to depart from our d
nition of density entropy.

Our conclusion is that setting an out of equilibrium initi
condition might not be enough for the density entropy
reveal the underlying KS entropy. A promising directio
seems to be that adopted by many authors with thermosta
algorithms @30–34#, flux boundary conditions@35,36#, and
escape condition@37,38#. For updated literature on these a
proaches the interested reader can consult the recent pap
Ref. @39#. For the technical and conceptual difficulties co
cerning the information content of a chaotic trajectory, t
interested reader can consult Sec. 8.11 of the last book of
of the authors of this field of research@40#. Here we limit
ourselves to pointing out that the constraints adopted
these authors realize steady out of equilibrium conditio
rather than an out of equilibrium initial condition with
subsequent regression to equilibrium. It might be the sub
of future interesting research work to establish if the expe
mentally observable properties realized by these constra
can be related to the microscopic KS entropy without dep
ing from the definition of density entropy adopted in th
paper.
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